AD-A246 333 o
IR @)

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC
ELECTE
_ FsazlieszD

FAST ENVELOPE CORRELATION
PASSIVE RANGING
by
Frank J. Mika

September, 1991
Thesis Advisor: Ralph Hippenstiel

Approved for public release; distribution is unlimited.

92-0435
92 2 19 ¢55 TR ’

y




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution 1s unhimited.
2b DECLASSIFICATION/DOWNGRADING SCHEDULE
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION T
Naval Pustgraduate School (if applicable) Naval Postgraduate Schoul

EC

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Program tlement NO Project No Task No WOrk Unit Accession

Number

11 TITLE (Include Security Classification)
FAST ENVELOPE CORRELATION FOR PASSIVE RANGING

12 PERSONAL AUTHOR(S) Mika, Frank Jude

13a TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (year, month, day) (15 PAGE COUNT
Master’s Thesis From To 1991, September 113

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.

17. COSATICODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP fourier transform; correlation; frequency analysis; signa! processing

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Application of classic triangulation methods wiil allow the location of a radar to be determined by passive sensors. Through the use of modern
digital signal processing techniques this estimate can be made in a simpler fashion using a conventional receiver.

In this thesis a technique is developed for time difference of arrival (TDOA) estimation using a frequency domain based correlation detector
driven by an envelope detector. Time lag boundaries are defined on the output of the correlator. A fixed detection threshold is calculated o permit
constant false alarm rate (CFAR) detection. The performance of the correlation detector is plotted as a receiver operating characteristic (ROC)
curve as a function of signal to noise ratio (SNR). An interactive MATLAB software program is provided to perform either spectral domain or
time domain based correlation.

Spectral domain based correlation uses the Fast Fourier Transform (FFT). Implicit with the use of the FFT are finite arithmetic internal
processing errors which are modeled as independent uncorrelated noise sources. A method is presented to account for SNR degradation at
the output of the FFT.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
J UNCLASSIFIED/UNLIMITED n SAME AS REPORT n DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22¢ OFFICE SYMBOL
Hippenstiel, R.D. 408-646-2633 ECMHi
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted RITY IFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

B




Approved for public release; distribution is unlimited.

Fast Envelope Correlation
for Passive Ranging

by

Frank J. Mika
Civilian, United States Air Force
B.S.E.E., University of Miami

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author: Og /“"“e / M

Frank J. Mika

Approved by: Q-J.Q} N, MMM

Ralph D. Hippenstiel, Thesis Advisor

/

— ~ )

Harold A. Titus, Second Reader

Michael A. Morgan, ¢hairman
Department of Electrical and Computer Engineering

ii




ABSTRACT

Application of classic triangulation methods will allow
the location of a radar to be determined by passive sensors.
Through the use of modern digital signal processing techniques
this estimate can be made in a simpler fashion using a
conventional receiver.

In this thesis a technique is developed for time
difference of arrival (TDOA) estimation using a frequency
domain based correlation detector driven by an envelope
detector. Time lag boundaries are defined on the output of the
correlator. A fixed detection threshold is calculated to
permit constant false alarm rate (CFAR) detection. The
performance of the correlation detector is plotted as a
receiver operating characteristic (ROC) curve as a function of
signal to noise ratio (SNR). An interactive MATLAB software
program is provided to perform either spectral domain or time
domain based correlation.

Spectral domain based correlation uses the Fast Fourier
Transform (FFT). Implicit with the use of the FFT are finite
arithmetic internal processing errors which are modeled as
independent uncorrelated noise sources. A method is presented

to account for SNR degradation at the output of the FFT.
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I. INTRODUCTION

A. BACKGROUND

Interception of radar transmissions by passive sensors is
one of the responsibilities of electronic intelligence.
Analysis of the signal of a radar can provide an estimate of
the distance and direction of an emitter relative to an
intercepting receiver. Knowing the location is an important
consideration in the evaluation of strategic and tactical
capabilities of the radar.

Triangulation is a traditional technique where the angle
of arrival of a radar signal at two spatially separated
receivers provides an estimate of the transmitters location.
With the advent of the computer, digital signal processing
algorithms can be implemented that provide emitter range
information and hence allow localization in a sequential
sense. One of these processing algorithms is called the time

difference of arrival (TDOA) method.

B. TIME DIFFERENCE OF ARRIVAL

The TDOA algorithm relies on two bistatic passive sensors
attempting to receive the transmission of an active radar.
Reception by the two sensors is preferentially done in the

main lobe of the transmitting radar, but due to the




nonsynchronous nature of the task, reception through one of
the sidelobes of the transmitting radar is expected with a
resulting decrease in received signal power.

Given a transmitted radar pulse f(t), two physically
separated passive sensors will most likely receive this pulse
at times t; and t,+t. The time difference T is proportional to
their differential distance relative to the emitter. This time
difference of arrival can be used in the estimation of the
differential range of the emitter to the receivers. The
reception of the first pulse in a pulse burst by the sensors
is paramount in performing the TDOA estimate.

The concept of measuring the TDOA of a radar pulse between
two separated receivers can be modeled by a hyperbola. The two
sensors whose positions are known are located at the two focal
points of the hyperbola. A transmitting radar is located in
the area surrounding the two sensors. Figure 1 shows this
model.

A hyperbola is the locus of points in which the distance
from any one point on the hyperbola to one focus differs by a
constant amount from the distance to the other focus. This
differential distance is proportional to a difference in
arrival time T, of a radar pulse as detected between the two
sensors. Once t is measured the hyperbola can be drawn. If the
sensors (moving aircraft or nongeostationary satellites)
repeat the differential arrival time measurements at several

2




time intervals, a series of hyperboclas will be generated,
fixing the location of the transmitting radar. Alternately,
the angle of arrival at either sensor can be used to define
the position of the transmitter on the hyperbola. A good
introduction into the use of the hyperbola in navigation is

found in [Ref. 1l:p. 27].

Range (meters;
%vansm-ﬂmq Radar
/ |
t
1

t o+
. T
l —
Sensor 1 Sensor 2 Range (meters;
tfocal point 1) ffoca! point 2)

Hyperbola for td= 1ms,

td=n'+’|’)-|,

Figure 1. Time difference of arrival model.

This discussion assumes that the radar signal received by
the two sensors is induced by the direct wave from the
transmitter. The effects of refraction and reflection on

propagating radar waves are not covered here.




The purpose of this thesis is to develop and test an
algorithm to estimate the differential arrival time T, of a
pulsed radar signal collected by two passive sensors. If the
pulse burst is collected in the time domain, time correlation
can be used to generate a TDOA estimate. The Fast Fourier
Transform (FFT) can also be used to perform the correlation of
the two received signals (i.e., fast correlation).

Additive noise n(t), superimposed onto a transmitted radar
signal £(t) by the environment and the radar receiver, creates

a composite signal s(t) at the receiver

s(t) = £(t) + n(t) . (1)

The use of the Fourier Transform for TDOA estimation is
attractive because of the processing gain (PG) a radar signal
receives in being transformed from the time domain to the
frequency domain during the detection process. FFT processing

gain for real valued signals can be approximated by

PG (dB) = (log, [number points in data record] -1)3 . (2)

See for example [Ref. 2:p. 33]. The signal to noise ratio
(SNR) at the output of a FFT (SNRy,y) 1is a function of the PG
and the SNR at the input to the FFT (SNR;,) . This relation is

given by




SNRy,r = SNR;y, + PG . (3)

The corruptive effects of additive noise are reduced by the
transformation, allowing the frequency domain detection of the

signal.

C. RADAR TYPES

The TDOA algorithm is primarily applied to pulsed radars.
The continuous wave (CW) radar provides target radial velocity
through the Doppler shift of its return. The CW radar does not
use a pulsed transmission. Therefore, the TDOA algorithm
cannot not be directly applied to the reception of CW signals.

Pulsed radars can be divided into two broad categories,
ordinary low pulse repetition frequency (PRF) pulsed radars
and the pulse Doppler radars.

Low PRF radars can yield unambiguous range information,
while their radar returns do not give target velocity
information directly. Generally because of the long duty cycle
of the low PRF radar, the probability of receiving all radar
pulses in a pulse burst by two passive sensors is great. The
TDOA algorithm can then estimate the differential distance to
the emitter using the low PRF burst.

The pulse Doppler radar uses coherent transmission and
reception with a moderately high PRF [Ref. 3:p. 17.1}. It
gives both range and radial velocity information about a
target, though not with the same accuracy of the ordinary

5




pulsed radar or CW radar respectively. In the pulse Doppler
radar, as in all non-bistatic radars, the receiver must be
turned off while the transmitter is on. Because of this, a
range ambiguity exists. Echoes having delay times equal to an
integral multiple of the PRF will be undetected. Target echoes
that remain within this blanked time interval will remain
undetected. A second source of range ambiguity exists. For a
target located at a distance r;, from the tracking radar, all

other targets in the main beam of the radar a distance

r,, 2r,, 3r,, 4r,, ..., kr,
(4)
where k = integer ,
will appear to be approximately the same distance from the
radar.

Pulse Doppler radars can be divided into a low, medium and
high PRF class. Both the low and medium PRF pulse Doppler
radar transmissions can be passively intercepted and a
relatively simple TDOA estimate can be formed.

Reception of each pulse in a pulse burst from a high PRF
pulse Doppler radar by two independent passive sensors can be
difficult. If either sensor misses the first pulse, the TDOA
estimate will be in error. This is true for any radar, but has
a higher likelihood of occurring in the high PRF radars due to
the shorter pulse widths used. Should the pulse burst be coded
so that a nonuniform time pulse sequence is generated (i.e.,

6




staggered PRF), then missed pulses by either sensor will not

seriously degrade the validity of the TDOA estimate.

D. FAST FOURIER TRANSFORM OUTPUT SIGNAL TO NOISE RATIO

The Fourier transform is a computationally intensive
mathematical operation. When implemented on an FFT processor
using fixed point arithmetic, internal processing errors are
generated. These errors are a function of the transform size,
and the number of bits used internally in the FFT processor.

The primary building block of the FFT is the butterfly
algorithm. There are three dominant processing errors that
occur within the butterfly. They are scaling, truncation and
trigonometric errors. These can be modeled as independent,
uncorrelated noise sources. The cumulative effect of these
noise sources is to reduce the potential SNR at the output of
the butterfly, and therefore, the FFT processor.

This thesis will also examine the effects of noise caused
by FFT processing, and will present a method to account for
the degradation of the output SNR due to finite arithmetic.
Certain FFT implementations will keep the signal energy larger

with respect to the three noise power sources than others.




II. TIME DOMAIN BASED CORRELATION

A. BACKGROUND
The correlation function R(T) measures the degree of
similarity between two signals s(t) and g(t) and is described

by

R(x) = limit, . 2—1Tf_;rs(t)g(r + t)dt

(5)

where g(t + t) g(t) displaced by the shift =

Correlation can be performed in a radar receiver between
a target return corrupted by additive noise, and a replica of
the transmitted signal maintained by the radar. This replica
is designed into the frequency response of the matched filter
of the radar receiver. [{Ref. 4:p. 373].

Correlating two signals produces an output that does not
resemble either of the two input signals. The shape of the
received waveform is destroyed during the correlation process.
The useful item of correlation is an amplitude peak, where the
location along the time axis of this peak indicates the amount
of time that one signal lags the other.

If the correlation process occurs between a signal and a
delayed replica of itself, the process is called
autocorrelation. If two dissimilar signals are correlated, the
process is called crosscorrelation.

8




B. AUTOCORRELATION

Autocorrelation is the process by which two identical
signals, one a delayed replica of the other, are correlated.
The autocorrelation function of a discrete time sequence x(i)

is defined by [Ref. 5:p. 556]

N-1-]1])

Ill) = Y x(i)x(i+ 1)
i=o (6)
where 1 = shift operator
N = number of data points in x{(n)

This function is not scaled with respect to the shift operator
nor the number of data points. Figure 2(a) shows the effect of
autocorrelation on a burst of 13 pulses of unit amplitude.
Normalized autocorrelation produces a triangular envelope
waveform of height one at a time lag of 2zero. The location of
this peak indicates that the time shift for maximum overlap
between the pulse burst and a shifted replica of itself is
zero.

For illustration, a Barker coded sequence of pulses of
length 13 is also autocorrelated in Figure 2(b). The Barker
code is given by +++++--++-+-+, where + and - could represent
0 and ©® radians carrier phase shift, respectively. Barker
coding of a pulse sequence constructively modifies the
correlation output to magnify the time lag peak. The zero lag
point has the greatest amplitude. Adjacent peaks are

significantly reduced in amplitude. Because of this reduction,
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Figure 2. (a) Normalized autocorrelation of 13 equal

amplitude pulses. (b) Normalized autocorrelation of 13 Barker
coded pulses.

if noise is added to the received signal, a Barker coded radar
pulse burst will have a correlation peak that is not as easily
confused with adjacent peaks.

Now consider the autocorrelation of a random process. An
independent, identically distributed 2zero mean Gaussian
sequence with variance of one is shown in Figure 3. The
autocorrelation of this sequence produces a peak at zero time
lag. There is no strong correlation of the Gaussian noise
except at zero time lag. The autocorrelation of Rayleigh

distributed noise is shown in Figure 4.
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Figure 3. (a) Gaussian distributed noise sequence.
(b) Normalized autocorrelation of Gaussian noise.
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Tigure 4. (a) Rayleigh distributed noise sequence.
(b) Normalized autocorrelation of Rayleigh noise.
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Rayleigh distributed noise has a mean (dc) value of

T
N2 (7)

standard deviation

mean value

where o
The autocorrelation function of Rayleigh noise has twc
components. A triangular envelope caused by the dc component
of the Rayleigh noise, and a weighted delta function at the
apex of the triangle which indicates the time shift of maximum
overlap of the two sequences. Clearly maximum overlap occurs

at a time shift of zero for any autocorrelation function.

C. CROSSCORRELATION
Crosscorrelation is the process wherein two different
signals are correlated. The crosscorrelation function of a

discrete time sequence is defined by

N-1-]2]

I, (1) = Z'; x(i)y(i + 1) 8)

where x(i) and y(i) are two different seqQuences.
This function is not scaled with respect to the shift operator
nor the number of data points. Figure 5 shows the
crosscorrelation of two uncorrelated Gaussian noise sequences
and two uncorrelated Rayleigh noise sequences. Clearly, no
dominant amplitude peak is visible in either crosscorrelation
plot. Lack of a dominant peak indicates there is no strong

correlation between the two sets of noise sequences.

12
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Figure 5. (a) Normalized Gaussian noise crosscorrelation.

(b) Normalized Rayleigh noise crosscorrelation,

D. CORRELATION COEFFICIENT

A measure of the linear dependence between any two zero
mean stationary time functions x(t) and y(t) is the
correlation coefficient function and is defined [Ref. 6:p. 48]

Iy (%)
VT (01T, (0 (9)
where |p, (t)| < 1 for all <.

Pry(T) =

This function is the crosscorrelation function normalized by
the square root of the maximum values of the individual
autocorrelation functions. The normalizing factor is not a lag

dependent quantity.
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Given two time series x(t) and y(t) where a is any

positive number

Po(t) = 1 1if x(t) = ay(t)
P, (T) = -1 if x(t) = -ay(t) (10)
Py(T) = 0 if x(t) and y(t) are uncorrelated.

Another way of defining a normalized correlation

coefficient for a discrete time series of finite duration is

given by

N-1-|1}

Y x(i) i+ D)

Poy (1) = = (11)
N-1 N-1-|1}
\J;x(i)z\l Y rvii+n?
=0 1=0

E. SQUARE-LAW DETECTION AND CORRELATION

If x(t) is a real valued function of time, the Hilbert

transform of x(t) is defined by [Ref. 6:p. 484] as

R(t) = H [x(t)]
- - n(’iz(lj)u) du
- (12)
= 1
x(t) = (ut)
where * = convolution operation
The output of a square-law envelope detector u(t), can be

described by

14




u(t) = x%(t) + ®R2(¢t)

where x(t) (13)

real valued time function
input to square-law detector

The correlation coefficient function of two time functions
x(t) and y(t) is defined in Equation 9. The Hilbert transform

of the correlation function is defined as

P (t) = H [p ()]

R (%)
0,0, (14)

standard deviation of x and y
respectively

where o, and o,

The correlation coefficient for two square-~law envelope

detected signals, p,.(T), is defined by [Ref. 6:p. 512] as

Pur (%) = P2 (%) + 2 (%)

(15)

where u(t) = square-law detected signal of x(t)
v(t) = square-law detected signal of y(t)

The quantity p,,(T) produces a sharper correlation peak than
Psy (T) . This sharpening of the correlation function peak output
can aid in locating the TDOA correlation peak. An example of

both p,,(T) and p,(tT) is plotted in Figure 6.

F. ENVELOPE CORRELATION AND RELATED STATISTICS

In this thesis, time domain based correlation will be
performed on the output of an envelope detector. An envelope
detector can be easily implemented in hardware using a diode.
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Figure 6. (a) Normalized correlation coefficient. (b) Hilbert

transform of the normalized correlation coefficient (dotted
line).
To derive the expected <value and variance of the
crosscorrelation function, two cases must be considered. These
cases are noise only present, and signal plus noise present in
both channels of the correlator. Under the noise only case,
the statistics for the correlator output are easily derived.
We consider two real, independent identically distributed,
zero mean noise series at the input to the correlator. Each
series has zero mean and variauce ¢° . It is shown in Appendix
A, that the expected value of the output of the

crosscorrelation function r, (¢) is

E[r,(1)] =0 . (16)
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The variance of the output of the crosscorrelation function
r,, (¢) is
2 (N-|1|) o

o Ixycl) (17)
where N = number of data points

Since equal variances are assumed for both time series, o' is

the square of the variance of either noise series.

G. BLOCK CORRELATION

Two time sequences can be correlated by any of three
different methods. These will be discussed below.

The first method blocks the length of each input sequence.
Correlation of these blocks will provide an output with a
variance given by Equation 17. The linear dependence of the
correlation variance on (N-|[Q|) is shown in Figure 5 for zero
mean Gaussian noise. Figure 5 shows the correlated output at
¢=0 (zero time lag) is scaled by (N-|0|)=N. Correlation output
at a time lag of iN are scaled by (N-|N|)=0. The linear
dependance of the correlation output variance on the time lag
does not allow a constant detection threshold, which is needed
to automatically determine the location of the correlation
peak.

A second method of correlation blocks a fixed length
sequence x(n) and correlates it with an arbitrarily 1long

sequence y(n). The correlation output for this algorithm has

17




a variance of Ng‘. Clearly, no scaling of the correlation
output variance as a function of time lag would occur.

A third method is scaling applied to the output of the
first technique. The correlator output is multiplied by a
weighting function, 1/(N-|0])*? to correct for the lag
dependency of the variance. The selection of a constant

detection threshold will be addressed in Chapter V.

18




III. FREQUENCY DOMAIN BASED CORRELATION

A. FOURIER TRANSFORM

Frequency domain techniques can be used to perform fast
correlation rather than the time domain techniques previously
discussed. The Fourier transform translates the discrete time
sequence x(n) into the frequency domain .

For a finite duration time series x(n), the discrete
Fourier transform (DFT) is defined by the pair of equations

[Ref S:p. 100])

X(k)

N-1 2%
-1 (<) nk
Zx(n)e ¥ 0 g k< N-1

n=0
(18)

N-1 2R
j(_..)nk
1 E‘X(k) e ¥ ,0<n<N-1.
N k=0

x{n)

Equation 18 is used to transform the N discrete sample values
into N frequency domain coefficients.

The following discussion is based on (Ref. 5:p. 286]. The
DFT is a computationally intensive algorithm if implemented
directly. The direct evaluation of the DFT requires N’ complex
multiplications. The time required for the evaluation of a DFT
is proportional to N2,

Algorithms have been designed that take advantage of the
symmetry and periodicity of the DFT, reducing the amount of
computation required to solve the DFT. Any of these algorithms
are referred to as the FFT.
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Generally, the FFT requires (N/2)log,N complex
multiplications. This smaller computational workload becomes
significant as N, the number of data points in the time

series, becomes larger.

B. NORMALIZED FREQUENCY DOMAIN CORRELATION

In some radar receivers the processing of pulse sequences
occurs in the frequency domain. Therefore, a frequency
representation of the time domain pulses may already exist.
The frequency coefficients do not necessarily need to be
transformed back into the time domain to perform the
crosscorrelation.

Frequency domain data can be crosscorrelated by
multiplying one set of coefficients by the complex conjugate
of the second set of coefficients. The product is translated
Lack to the time domain through the use of the inverse FFT.
Frequency domain based normalized crosscorrelation is

described by
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L xov ) &
[a,‘},(l)=-l S , 0s1sN-1
NGt \‘N-l N-1
|X (k) |? Y (k) |?
kgo 1& (19)
= 0 otherwise
where X(k) = FFT of the series x(n)
Y(k) = FFT of the series y(n)
* = conjugation
P (1) = normalized correlation function

To avoid circular correlation, both time domain pulse

sequences are zero padded to N, data points

N,2N,+N, -1
where N, = number of data points in x(n) (20)
N, = number of data points in y(n).

To take advantage of the processing speed of FFT algorithms,
N, is made a power of two by increasing its length with

additional zero padding

N, =2"2 N, +N, - 1 (21)

where m is an integer .

Prior to any zero padding, the dc component is removed to
create zero mean pulse sequences. Both sequences, each of
length N, are then transformed to the frequency domain through
the FFT and processed using the frequency domain correlation
technique. A MATLAB implementation of frequency domain

crosscorrelation is given in Appendix B (FreqCorr7.m).
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C. TIME DIFFERENCE OF ARRIVAL (FOURIER DOMAIN)

The normalized crosscorrelation function implemented in
the frequency domain (Equation 19) is used to estimate the
TDOA. The crosscorrelation of two similar signals will produce
a dominant peak in the output of the correlator. This peak is
used as an estimate of the TDOA between the two signals. For
two signals that have not been corrupted by noise, the
location in time of this peak is easily determined. Pulsed
signals that have been distorted by noise produce a noisy
correlated output. The output noise can mask the TDOA peak in
low SNR conditions. Consequently, the probability of selecting
a noise sample instead of the true TDOA peak increases with
decreasing SNR.

Figures 7,8 and 9 show the frequency domain based
crosscorrelation of two pulse sequences as a function of
decreasing SNR. A reception is simulated with a pulse burst
demodulated by one receiver fed into one channel, and a pulse
burst demodulated by a second receiver fed into the second
channel of the correlator. Pulse burst one has a transmission
delay of zero. Pulse burst two has a delay of 50 time units.
Therefore, the total TDOA is 50 time units. The TDOA peak is
clearly seen at the high SNR of +7dB and +3dB. At 0dB SNR,
noise peaks exceed in amplitude the true TDOA peak causing an

incorrect estimate if one was selected.
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Visually estimating the location of the peak with the

maximum amplitude in the output of the correlator is a easy

task. The

decision rule states that the point with the maximum
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amplitude is selected as the TDOA estimate, provided the
amplitude exceeds a predetermined threshold.

When many blocks of data must be processed, visual
inspection of the correlation output is not possible. Chapter

V discusses the design of a threshold for automated data

processing.
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IV. NOISE AND SIGNALS IN RECEIVER

A. NOISE AND SIGNALS IN THE RADAR DETECTOR

The purpose of a radar receiver is to process and detect
the reflected energy from a target being tracked by the radar.
An I/Q demodulator is assumed in the radar receiver, located
after the last intermediate frequency (IF) amplifier and prior
to the video signal display. Data to be processed for TDOA can
be obtained from three locations on the I/Q demodulator. These
locations include the envelope output, the envelope squared
output and the I/Q channel data.

White Gaussian distributed noise is assumed to be added to
radar pulses during their transmission through the atmosphere
and reception by the receiver. This noise contributes to the
degradation of the SNR and is caused by fluctuations in the
target radar cross-section and the loss of signal energy due
to the propagation distance between the target and the
receiver.

At typical radar frequencies the front end amplifier of
the radar receiver contributes to this noise power. The noise

power for a thermally noise limited receiver is defined as N,

25




N,=k T, B
where k = Boltzman's constant
B = IF bandwidth
(22)
Tsys = Tﬂt +TG
T,, = receive antenna temperature

T, = effective noise temperature
of the receiver

The total noise is modeled as zero mean Gaussian distributed

noise with a probability density function (pdf) of

—x?
— 23
Dy(x) =1 2e203 ' (23)
2'n°0

where 0% is the noise variance due to all noise sources (i.e.,
receiver front end, transmission noise).

For an operational radar, either a pulsed signal plus
Gaussian noise or Gaussian distributed noise alone is assumed
at the input of the 1I/Q demodulator. The probability
distribution of the demodulated signal is dependant on which
of the three outputs of the I/Q demodulator is used.

1. Coherent detection

If the exact frequency and phase of the received pulse
burst is known, and matches the frequency and phase of the
local oscillator in the receiver, then the signal can be
coherently detected. Coherent detection simplifies the

probability description of the signal and noise at the output
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of the I and Q channels. The I and Q sequences have an

independent Gaussian distribution, and can be described as

I,Q ~ N({m;(n),my(n)},0?) (24)
where m; (n), mo(n) = I and Q mean values respectively
0? = noise variance due to all noise sources .

Both the I or Q channel can be processed using the correlation
algorithm followed by threshold detection.

Due to the passive nature of signal reception and
demodulation, the exact frequency and phase of the received
pulse burst are not available at the receiver. Therefore,
coherent detection is not feasible for TDOA estimation.

2. Envelope Squared Detection

For a zero mean Gaussian distributed noise input to
the I/Q demodulator, I? and Q* each have a chi-squared
distribution with one degree of freedom. Their pdf’s can be

described by

1 - 2
Pyly) = e-y/20 fory 20
Y o/2ny
=0 fory <o (25)
where 02 = variance of I and Q

y = I? or Q%
The envelope squared output is the sum of I? and Q? and is
therefore chi-squared with two degrees of freedom. This pdf

can be described by
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e-z/za‘

5 for z 2z 0
20 (26)

pz(2)

where z = I? + Q2
Envelope squared detection is attractive because the Hilbert
transform can be used to enhance the TDOA peak in the
correlator’s output. Unfortunately in a low SNR environment
the noise power will also increase as the noise contribution
is squared.
3. Envelope Detection

A common form of receiver demodulation at IF
frequencies is the envelope detector. For all simulations in
this thesis, envelope detection will be assumed. The output of
the envelope detector is the modulation envelope of the
received pulse burst. For Gaussian distributed noise at the
input to the I/Q demodulator, the noise at the envelope output

is Rayleigh distributed with pdf given by

u?

2o
Ug 20

Potw) = Le 2, uso
o
=0, otherwise (27)
where 0° = variance of Gaussian noise
u=ﬁ=‘/1’5+oi

For a pulsed sinusoid plus Gaussian noise at the input to the
I/Q demodulator, the pdf of the envelope at the output is

Rician distributed. The Rician pdf is given by
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-(r2+4%)

pp(r) = T 2 .ro(f;—f) , 20
=0, otherwise (28)
where A = amplitude of received sinusoid
02 = variance of Gaussian noise
2
where I (z) a L f T gzcost0) g9
21 Jo

(29)
and I, (z) = modified Bessel function of the
first kind of zero order

Figure 10 shows a block diagram of the I/Q demodulator and the

various pdfs in the radar receiver.

B. ENVELOPE CORRELATION OF RAYLEIGH NOISE

Rayleigh distributed noise is produced at the output of
the envelope detector under noise only conditions. This noise
is then processed by the correlator during the TDOA estimate.
In all follow on discussions and simulations, the envelope
processing scheme is used.

The autocorrelation of Rayleigh noise as discussed earlier
produces a large triangular bias in the output which decreases
as the time lag increases. This bias is produced by the dc
component of the Rayleigh distributed noise.

This triangular function contains no information relative
to the TDOA estimate. The large numerical values in the bias
can potentially limit the dynamic range in the FFT based
correlation. A constant, detection threshold cannot be
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Figure 10. I/Q demodulator in the radar receiver.

implemented at the output of the correlator with this
triangular function present. For these three reasons, it is
advantageous to force the Rayleigh or Rician distribution to
have a zero mean. This will remove the triangular bias formed
by the correlation process. This modification of the received
pulse burst does not degrade the TDOA estimate. For all
realizations (i.e., blocks of data), the dc component of the

Rayleigh noise will be removed.
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1. 8hifted Rayleigh Noise
Forming a Rayleigh distributed time series x(n) and
subtracting its expected value produces a shifted Rayleigh

sequence. This algorithm is described by

x,(n) = x(n) - 02

2
(30)
where x,(n) = shifted Rayleigh noise sequence
0 = Gaussian noise standard deviation

The shifted Rayleigh time series has a zero mean. The new time
series and the corresponding time domain based autocorrelation

function are shown in Figure 1l1.

shifted Rayleigh time series 1 pormalized shifted Rayleigh autocorrelation

W 4

1000 fse0 000 500 0 300 1000 1500

(a) (b)

Figure 1ll1l. (a) Shifted Rayleigh time series. (b) Normalized
shifted Rayleigh time domain based autocorrelation.

Histograms of a Rayleigh pdf and a shifted Rayleigh
pdf are shown in Figure 12. Clearly, the effect of removing

the dc term from the Rayleigh distributed time series creates
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Figure 12. (a) Rayleigh pdf. (b) Shifted Rayleigh pdf.

an autocorrelated output that does not have the 1limiting
triangular bias. The impulse at zero time lag dominates the
correlation output. A constant detection threshold, at least
over a small number of range bins, could be implemented with
this type of correlation output.

2. TFrequency Domain Based Correlation of Shifted Rayleigh
Noise

The frequency domain based autocorrelation of x;(n) is
now examined. Sequence x,(n) is zero padded as described in
Equation 21. A frequency domain series is created using the
FFT as described by Equation 18. The autocorrelation estimate
is derived using Equation 19 and is plotted in Figure 13. The
results of frequency domain based autocorrelation are very
similar to the results of time domain based autocorrelation
using shifted Rayleigh noise.
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Figure 13. Normalized frequency domain based autocorrelation.

3. Spectral Interpolation

With the incorporation of the FFT in modern radar
receivers, it is possible that the received pulse burst has
been transformed into frequency data as a byproduct of
detection. Processing time would be lost in converting this
data back into a time series to be correlated. Of course,
there is no guarantee that the dc component has been removed.
In this section an algorithm is given to perform frequency
domain based correlation on a Rayleigh distributed noise
sequence while avoiding the ¢triangular correlation bias
created by the (possible) dc component.

A Rayleigh distributed noise series x(n), N points
long, is transformed into an ordered sequence of N complex

coefficients using the FFT algorithm. In general, a segquence

33




X(k) of coefficients is indexed from zero to N-1 and is

described by

X(k) FFT { x(n) }, 0 s k sN-1
where k = frequency index

(31)

The FFT creates the zero indexed term X(0) by summing all the
elements in x(n). X(0) is real and can be viewed as the dc
component of x(n). By removing the X(0) coefficient from the
frequency sequence we have in effect removed the dc bias from
the time series x(n). At this point, the modified Fourier
transform X(k) approximates the DFT of a shifted Rayleigh
series.

Time domain correlation of an N point series produces
2N data points. Frequency domain based correlation of an N
point sequence produces N data points. To force frequency
domain based correlation to equal time domain based
correlation (i.e., avoid circular correlation), the number of
terms in the frequency series must be doubled. The frequency
series is expanded by storing each pair of complex frequency
coefficients at a location twice the value of the original
index.

As a first approximation, the data points between
adjacent coefficients are 1linearly interpolated in the

expanded array. Figure 14 illustrates the effect of FFT
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interpolation and the zeroing of the dc terms. Correlation

results as described by Equation 19 are shown in Figure 15.

Re{ X(w } or im{ Xtw) }
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Figure 14. FFT interpolation, and zeroing of ¢the dc¢
coefficient.
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Figure 18. Normalized frequency autocorrelation through
interpolation.
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Clearly, the triangular bias in the correlation output has
been removed. A small impulse at a time lag of -N is observed,
which can be disregarded.

For block processing, typically only correlation
products within $10% of the zero time lag position are
considered to be statistically reliable. Therefore, the TDOA
estimate is formed within this correlation band. The impulse
at -N falls outside of the TDOA evaluation area and will not

cause a false detection.

C. CORRELATION OF PULSES IN ADDITIVE RAYLEIGH NOISE

Time domain based correlation of a pulse train in additive
Rayleigh noise should produce the same result as frequency
domain based interpolation followed by an equivalent
correlation. A comparison was performed using a 50% duty cycle
pulse train in additive shifted Rayleigh noise.

Time correlation was performed on the pulse burst. The dc
component of the noisy pulse train is removed forming a zero
mean signal. The time domain based autocorrelation of this
sequence is shown in Figure 16(a).

The pulse burst was also transformed into the frequency
domain using the FFT with the dc component intact. N Fourier
coefficients are expanded and the X(0), X(xl) coefficients
zeroed out. The sequence is correlated after interpolation

using Equation 19 and plotted in Figure 16(b).
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Figure 16. (a) Normalized time domain based autocorrelation.
(b) Normalized frequency domain based interpolation and
autocorrelation. Zero time lag between each channel.

Clearly, the two correlation algorithms produce similar
outputs. Both have a dominant perk in their output for TDOA
estimation. Frequency domain based correlation displays a
exponential decay of the sidelobes about the main peak. This
effect is not observed in time autocorrelation, and is caused
by the first order interpolation used in the frequency domain
based method. A more robust interpolation algorithm will
eliminate the exponential decay, yielding the desired linear
decay.

Next, time and frequency domain based crosscorrelation are
performed on two pulse sequences. One pulse sequence lags the
other by 20 units. Both time and frequency domain based

crosscorrelation of the two sequences are plotted in Figure
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17. Clearly, both correlation algorithms produce a peak at 20
units. The nonlinear decay of the sidelobes surrounding the

dominant peak is again seen in frequency domain correlation.

1 normalized time based crosscorrelation normalized spectral based crosscorrelation

0.

W
i
o
W
T

[
T

amplitude
amplitude

)

»
1
s
w
T

b5 7100 0 100 300 3o 7100 0 100 200
time lag time lag

(a) (b)

Figure 17. (a) Normalized time domain based crosscorrelation.
(b) Normalized frequency domain based interpolation and
crosscorrelation. 20 unit time lag between each channel.

In summary, the frequency domain based interpolation and
crosscorrelation algorithm produces an output comparable to

time domain based crosscorrelation. It offers a method to

correlate pulse bursts collected in the frequency domain.
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V. THRESHOLD DESIGN FOR ENVELOPE CORRELATION

A. INTRODUCTION

A threshold at the output of a correlator is used to
estimate the location of a TDOA peak in a constant false alarm
rate (CFAR) receiver. The value of the threshold is a function

of the correlation output mean and variance.

B. CORRELATION OUTPUT AND CONSTANT VARIANCE

If the variance of the correlator, when driven by two
signals at the input, maintains a fixed value about some mean,
a constant threshold above the mean can be used. This allows
the design of a constant false alarm rate detector. The
largest correlation peak that also crosses the threshold is
defined as the TDOA estimate. The constant threshold design is

the easiest to impleme.ic.

C. CORRELATION OUTPUT AND TRIANGULARLY SHAPED VARIANCE

The crosscorrelation of two zero mean noise sequences with
the same number of data points, produces an output whose
variance has triangular form. Hence, a constant detection
threshold is not easily implemented. Instead, a threshold must
be designed that has a slope that matches the slope of the

correlation output. The design of a sloping threshold is
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difficult, particularly if the slope of the correlation peak
changes with time (i.e., changing noise environment).

A solution is to mathematically force the triangular
correlation variance to be flat. This is done by using a
bowtie correction of the form 1/ (N-|l|)*%. A bowtie correction
normalizes the correlation output to have a constant (lag
independent) variance. This design suffers from time changes
in the correlation output‘forcing the bowtie correction to be
recalculated. Note that the amplitude of the TDOA peak will
itself be dependant on the type of correction to the

correlation output.

D. THRESHOLD BASED ON ZERO LAG

The zero lag threshold method uses the variance of the
zero lag correlation output to calculate a constant detection
threshold. This is indicated in Figure 18.

The correlation output becomes statistically lesa reliable
the further removed the correlation products are from the zero
time lag position. To use correlation intelligently, the
correlation output is typically examined +10% of the distance
from the zero time lag position. Consequently, only
correlation output 10.1N from zero time lag will be used in
TDOA estimate simulations.

The detection method in this thesis uses a constant

threshold against the correlation output. The fixed threshold
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Figure 18. Correlation output with zero lag threshold.

was selected because the correlation output variance is, to a
first approximation, nominally flat within the 10.1N boundary.

The detection scenario that drives this thesis defines a
minimum radar pulse width of one microsecond (jsec) and a
burst length of four millisecond (msec). A 50% duty cycle
radar pulse is assumed. There are 2000 pulses per burst, which
when correlated, will generate an output that is 8000usec
(+4000pusec) in length. If $10% of the correlation output
around zero time lag are compared to the threshold value,

$400usec will be tested. For radar pulses traveling at the
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speed of light, a maximum distance of +120km is therefore
examined to form a TDOA estimate.

Correlation values at lags ~0.1N to 0.1N will be compared
in magnitude to the zero time lag based calculated threshold

value.

E. THRESHOLD CALCULATION FOR CFAR

The detection threshold is calculated using the output
terms of the crosscorrelation algorithm when noise only is
injected into the correlator. For convenience, Equation 8 is

repeated here,

N-|1]-1

Iyll) = 120 X3 Vil

(32)

x; and y;,; are zero mean Rayleigh (shifted)
distributed noise sequences

The correlation function at all lags of interest is thought to
be Gaussian distributed. According to Equation 32, every
estimate is the sum of a fairly large number of products
(i.e., central 1limit theorem). The average value of the

correlation output between the +0.1N endpoints is

+a

1
TR 1;‘ I, (1)

™
[}

(33)

where a = number of data points between the

0 and 0.1N lag positions in the
correlation output

The variance of r, (1) is calculated from
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+a

2 _ 1 _ B y2
g, = ?a—'+—1 IZ_:‘, (rxy(l) £) . (34)

For Gaussian distributed noise the probability of false alarm
(P,,) is a function of the detection threshold

-x?

1 = 24
P, = e ““t dx
e \/_21\:0th (35)
where T = detection threshold

For a given P,,, the threshold can be calculated from

T = erfc™ (Pg)o,

(36)

where erfc = complementary error function

Equation 36 relates the threshold to the Gaussian distributed

noise variance.

F. VERIFICATION OF CFAR THRESHOLD AND ROC CURVE

Using the above equations, thresholds were calculated for
the time correlation detector given in Equation 32 for three
different P,,’s. A MATLAB simulation was performed to compare
the measured false alarm rate of the time correlation detector
to the theoretical false alarm rate.

1. P, 8Simulation

Two 100 point sequences of zero mean Rayleigh noise

were injected into the correlation detector. The output of the
correlation detector between the -0.1N and +0.1N lag points
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was compared to the calculated threshold to measure the false
alarm rate. The number of points in the correlation detector
output that exceeded the threshold for a given P, were
recorded. The experimental P, is given as the ratio of
improper threshold crossings to the total number of monitored
range cells of the correlator output (see Table 1). For each
Ps,y 500 realizations were performed. Both theoretical and

experimental results are listed.

TABLE 1

THEORETICAL PROBABILITY OF FALSE ALARM

Simulation # P,=0.01 P.=0.001 P.=0.0001
1 0.0100 0.00076 0
2 0.0099 0.00090 0
3 0.0110 0.00085 0
e e —

The data in Table 1 show that a detection threshold
can be established for a correlation detector, using the
assumption of a Gaussian distributed output for P, ’'s of 0.01
and 0.001. For the lower P, value of 0.0001, the threshold
calculation fails, but in a positive sense. The measured P,
of 0 is below the theoretical P, of 0.0001. Either the
correlation variance is smaller than Equation 36 predicts, or

more terms must be summed in the correlation output to better
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approximate the Gaussian pdf as indicated by the central limit
theoren.
2. TDOA Simulation

The output of the envelope detector will either be
Rayleigh or Rician (non-central Rayleigh) distributed. 1In
those portions of the data where there is no signal energy,
the output will be Rayleigh distributed. Where the sgignal is
present, the envelope detector output will be Rician
distributed.

The purpose of the time domain based correlation
detector is to measure the TDOA of pulsed sequences embedded
in Rayleigh noise. Noise in low SNR environments will mask the
TDOA peak. A MATLAB simulation was performed to examine the
performance of the correlation detector in a decreasing SNR
environment.

Two pulse bursts embedded in additive Rayleigh noise
were created. The second pulse burst lagged the first by three
time units. Each pulse burst is a sequence of ten pulses, each
having a period of ten units. Each pulse in the burst had a
50% duty cycle.

The SNR established the amplitude relationship between
the noise and signal sequences. First, two sequences of zero
mean unit variance Gaussian distributed noise were created.
Rayleigh noise was generated from the two Gaussian sequences.
The Rayleigh noise had a mean of 1.2533 and a variance of
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0.4292. The theoretical second moment of the Rayleigh noise is
two and was verified in the MATLAB simulation. The second
moment is defined as the average power of the Rayleigh noise.
The amplitude of the nonzerc elements in each pulse burst was
then scaled to meet the desired SNR, using the measured
average power of the Rayleigh noise.

A detection threshold was calculated based on shifted
Rayleigh noise using Equation 36 where ¢2 was assumed to be
known (i.e., simulation information). In practical
applications, 62 would be estimated from the data. The SNR of
the two bursts were varied from 0dB to 18dB in the different
simulations. For each SNR, the two sequences were correlated
using Equation 32.

Graphs of the correlation output for a2 SNR of 1dB are
given in Appendix C for P, 's of 0.01, 0.001, 0.0001 and
0.00001. The threshold, which is a function of the P,, and
noise variance, is shown to increase with decreasing P,,.

The correlation peak at a time lag of three was the
correct TDOA estimate. If the maximum correlation peak in the
output was the third lag point, a correct TDOA estimate was
obtained. For each SNR, 30 TDOA estimates were made. The
correlation function output 100 data (lag) points per TDOA
estimate. The TDOA estimate was made on $10 data points on
each side of the zero time lag position in the correlation
output. The percent correct TDOA estimate for each SNR was
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calculated and is presented as a receiver operating
characteristic (ROC) curve in Figure 19.

The ROC curve shows that as the SNR increases, the
performance of the correlation detector increases. The
performance of the correlation detector in Figure 19 can be
improved if multiple sequential looks at the same SNR were

allowed.
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Figure 19. Percentage of estimated TDOA correct versus
SNR for time domain based correlation detection.
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VI. FFT ERROR ANALYSIS

A. INTRODUCTION

This chapter discusses several sources of processing
errors occurring within the FFT, and the effect of these
errors on the FFT output signal-to-noise ratio.

The computation of a FFT using fixed point arithmetic,
generates internal processing errors. These errors are due to
the fixed number of bits in the trigonometric look up table,
the truncation of arithmetic results during addition and the
scaling of results during the individual Dbutterfly
calculations.

The error sources can be modeled as independent additive
noise components at the output of the FFT. Their net effect is
to reduce the ideal SNR at the output of the FFT.

Each of these processing error sources will be described

below. The material in this chapter borrows from ([(Ref. 7].

B. COSINE/SINE TABLE NOISE
The computation of a butterfly algorithm in the FFT
involves multiplication by the complex coefficient (twiddle

factor)
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z
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2 ;e 27
cos(T"m) -J s1n(—N—m) (37)
= wm

A FFT butterfly is shown in Figure 20.

AlCm )

e

27T
- ](—N—)m
Wm= e

Figure 20. FFT butterfly calculation.

These trigonometric coefficients are precalculated, quantized
to (B) bits (where B is the size of the computer word
including sign bit), and stored in memory for future table
lookup during the FFT processing. The coefficients W° = 1 and
W*¢ = -j can be obtained in an exact form and therefore do not
contribute to the quantization noise. Quantization of the

other (twiddle) coefficients stored in the sine and cosine
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table introduce noise into the output of the FFT. The noise
power created by truncation of the sine and cosine

coefficients is defined by [Ref. 7] to be

02 = %2'25
(38)
where 02 = trigonometric noise power

B = number bits in computer word

C. TRUNCATION NOISE
The DFT of a finite duration sequence {x(n)} is defined in

Equation 18 and is repeated here for convenience

N-1 j2m,
X(k) =Y x(me ¥, 0sksN-1 . (39)

n=Q

The product formed requires four real multiplications because
both the exponential and the input data are complex numbers,
B bits in length. Each multiplication can produce a result of
2B bits which must be truncated from 2B to B bits, hence there
are four quantization errors for each complex valued
multiplication. The four quantization errors can be described
as four independent noise sources. The truncation noise power

is defined by [Ref. 7] as
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q%. = {12‘23 + _]:2'25}
where o = truncation noise power

B = number of bits in product after truncation

D. SCALING NOISE

The FFT as an algorithm processes a data vector of length
N by successive passes at the vector. During each pass, the
algorithm performs N/2 butterfly operations. Each butterfly
retrieves two complex numbers from memory, performs the
butterfly computation and returns two complex numbers to the
same memory address. The complex numbers returned to memory by
the butterfly can have a greater magnitude than the two
complex numbers initially fetched from memory by the
butterfly. In order for the results of the butterfly operation
to fit in the fixed word length of the memory of the computer,
the results must be truncated (scaled). Scaling is performed
by dividing by two the entire data array, and is implemented
in software by a right shift and an increment of the arrays
exponent register.

During the (m+l) pass of the data, the butterfly algorithm
selects two data points A(m) and B(m) and returns to memory
A(m+l) and B(m+l). The truncation error results from the
addition of two numbers of like sign in the upper part of the
butterfly algorithm or the subtraction of two numbers of
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opposite sign in the lower part of the butterfly algorithm.
The input to the butterfly is fixed to have maximum real and
imaginary values of *1. The output of the butterfly is fixed
to have a maximum value of +2, double the input value. To
prevent overflow of the butterfly output, either a prescale by
1/2 is required prior to entering the butterfly or an extra
bit must be available in memory to accommodate the possible
gain of two.

One method, automatic prescaling, truncates the least
significant bit of the butterfly output and represents
processing noise. In the case for which no scaling is
necessary for the pass, this truncation represents significant
processing error (noise).

A second method, data dependent scaling, is performed only
if a butterfly in the data pass overflows without scaling. If
any word in memory has an overflow bit set, all words are
shifted right as they are fetched from memory for the next
pass of the FFT. The total number of right shifts, p, executed
during the FFT process is used at the output of the FFT as a
scale factor of 2P, This scale factor is used at the output of

the FFT so that the total processing gain is maintained.
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The noise power created by the scaling of the data is
defined by (Ref. 7]
qg = 1{_}_2-2(3-1) + %2-2(3-1)}

2 3 (41)
where o2 = scaling noise power

E. OUTPUT SIGNAL TO NOISE RATIO

Figure 21 shows an error model of a butterfly in an FFT.

a {m}
MO—»G#} —{ ) aimen
R Q—»?ﬂ—» —3o() Bim+1
q s {m) ar {m)
?54— a,,m
217
w;n- ‘I('N"')m

Figure 21. FFT error model.
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The input data terms to a butterfly can be described by

1]

A(m)
B(m)

A(m) + N,(m)
B(m) + Np{m)

.. , 42
additive noise terms (42)

input data terms
noise corrupted data

where N, Ny
A(m), B(m)
A(m), B(m)

Without the effects of noise the butterfly algorithm produces

two outputs described by

A(m+1) = A(m) + W(m)B(m)
B(m+1) = A(m) - W(m)B(m) (43)

where W(m) twiddle factor

The error due to the A component will be calculated. The error
due to the B component is statistically equivalent to the
error in the A component. Including the effects of noise, the

output of the butterfly can be described by

A(m+1) = [A(m) + Ny(m) +~ gq,(m)] + [B(m) + Np(m) +q,{m)]-

(Wwim) + q,(m)] + g (m)

scale noise
sine/cosine table noise
truncation noise (in multiply)

where q,(m)
q.(m)
qr(m)

(44)

The total power at the output of the butterfly is then
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E{A(m+1) A°(m+1)} = E{AmA*(m}} + E{B(m)B*(m)} +
E{Ny(m)Ny(m)} + E{Ng(m)Ng(m)} +

. « 45
Elgs(m) g3 (m} + Elgg(mgi(m} + 4%
E{B(m)B*(m)}E{qgy(m) gy (m)} +
E{gr(m) gr(m)}
Redefining the terms of the total power leads to
E{A(m+1) A" (m+1)} = S*(m) + S%(m) + Ni(m) + Ni(m) +
203(m) + S2(m)oi(m) + oi(m)
where S2(m) = input signal power (4€)
o2(m) = scaling noise power
02(m) = truncation noise power
o2(m) = sine/cosine table noise power
Combining like terms results in
E{A(m+1)&A* (m+1)} = 252 (m) + 2Ni(m) + 20%(m) + (47

S%(m)oi(m) + oi(m).

This equation describes the total power as a function of the
signal power and the individual independent uncorrelated noise
terms. The total power output from the butterfly can also be
described as a function of its input signal power and the

total additive noise power generated within the butterfly as

E{A(m+1)A*(m+1)} = E{A(m+*1)A*(m+1)} + (48)
E{N,(m+1) Ny (m+1)}

Redefining these terms
E{A(m+1)A*(m+1)} = S2(m+1) + Ni(m+1). (49)
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Equation 47 and 49 are equivalent. The signal and noise power
for the (m+l) pass can be formed from those terms in the

proceeding pass

S%(m+1) + NZ(m+1) = 2S%(m) + 2Ni(m) + 20%(m) +

S2(m)a4(m) + o%(m) . (=0)
Equating the signal terms in Equation 50 yields
S¢(m+1) = 2S%(m) . (51)
Equating the noise terms in Equation 50 yields
Ni(m+1) = 2Ni(m) + 203(m) + 52(m)op(m) + of(m).  (52)

Equation 51 can be rewritten to show how the input signal
power increases as a function of m as it passes through the m*

stage of a butterfly of an FFT

S%(m) = 27s?,
(53)
here we modeled S?(0) = S2.
The signal power input to the butterfly is defined as
g2 = 1y2-m (54)

9

Rewriting Equation 52 to include this exponential increase of

S*(m) gives
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N (m+1) = 2Ni(m) + 20i(m) + 27S20%(m) + oZ(m). (55)
Equation 55 shows the relationship between the noise power of
a butterfly stage as a function of the noise power from the
proceeding butterfly stage. The noise and signal power can now
be calculated using Equations 53 and 55 for m passes through
a butterfly. Once calculated, the signal to noise ratio can be

formed.

F. RIGHT JUSTIFIED DATA

The length of a word in the computer is defined to be 16
bits (B) and accepts a 12 bit (b) data word. Right justified
data places the least significant bit (LSB) of the b bit data
word in the LSB of the B bit processor word. The output noise
to signal ratio is now calculated for ten passes through a
butterfly wusing right Jjustified data. The following
assumptions are used in the calculation;

1. The input signal is incoherent.

2. Scaling is performed every other pass after the most
significant bit (MSB) of data reaches the next to MSB
of the processor.

3. The first two passes do not use the trigonometric
table.

After the tenth pass (i.e., FFT size of 1024), it is shown

(Appendix D) that the noise to signal power is
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Na Ng 2 1 97 1 0% 56
—5(10)."5“Z~+40w+ Z?“'*—. ( )

B and b are previously assumed to be 16 and 12 bits in length

respectively. Substituting these values into Equation 56

2 153 T 532 T >-3
A(10) = 23— +4ip2, 112 1 24 . (87)
2 1.0 1,8 51 1,8
=2 =2 2
9 9 9

The noise to signal ratio reduces to

NZ
5‘3(10) = -67.5db -95.1dB -71.1dB -79.1dB  (58)
= input trig truncation scaling
noise noise noise noise

Clearly, the dominant degradation noise is the truncation
table noise (-71.1dB), followed by the scaling noise to signal
ratio (-79.1dB). For right justified data, the signal to noise

ratio is calculated to be 65.71dB.

G. LEFT JUSTIFIED DATA

Left justified data places the most significant bit (MSB)
of the b bit data word in the MSB of the B bit FFT processor
word. The output noise to signal ratio is now calculated for
10 passes through 2 butterfly for left justified data. The

following assumptions are made
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1. The signal is incoherent.

2. Data is left justified on input and scaling is
performed every other pass starting with the first
pass.

3. The first two data passes do not use the

trigonometric table.

It can be shown that after the tenth pass through the

butterfly that the noise to signal ratio is

2 2 A
ﬂ(lO) =.& +4o,2,+l& +zos,
S? 52 4 s S?

(59)

B and b were previously assumed to be 16 and 12 bits

respectively. Substituting these vaives into Equation 59 we

obtain

1,- 1 7 - T A-
2 =2 26 =12 32 2 2 30
2 (10) = 3 +a-tomz o 412 v 24 (60)
2 _1_2-2 3 iz-z iz-z
9 9 9
The noise to signal ratio reduces to
N;
—S—Z(IO) = -67.5dB -95.1dB -89.1dB -77.1dB (61)
= JInput trig truncation scaling
noise noise noise noise .

Clearly, the worst noise contribution to the SNR is the
scaling noise (-77.1dB), followed by the truncation noise (-
89.1dB) . For left justified data, the signal to noise ratio is

calculated to be 67.0dB.
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Further analysis shows that for large FFT’s (i.e., in the
range of 2!° and above), the trigonometric table noise is the
dominant noise source. A simulation was performed using an
AMDAHL machine to examine the error generated in performing a

FFT and an iFFT. Figure 22 shows the experimental setup.

AMDAHL Machine

N

Cata Daia
FFT FET

compare

save error in tabie

Figure 22. FFT processing error flowchart [Ref. 8].

The error that was generated was tabulated. Figure 23

illustrates the error as a function of FFT length.

H. SUMMARY

For either left or right justified data, the dominant
noise at the output of the 1024 point FFT is the scaling or
truncation noise. The SNR at the output of the FFT, for left
justified data is 67.0dB and exceeds the SNR for right
justified data which is 65.71dB. Clearly, left justified data
maximizes the computational SNR at the output of the FFT for
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MAXIMUM ERROR IN SINGLE
PRECISION FFT

ERROR
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FFT LENGTH

Figure 23. FFT error as a function of transform length
[Ref. 8].
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the values of b, B and N used in the above examples.
For a right justified data set transform size of N=2%?
(8192 points), the noise to signal ratio after the 13*" pass

can be written

2

Ny (13) 213NG + (215 +213 + 212) 5207 + 20470% + 17003 (62)
SZ 21352 :
This equation reduces to
2 2 2 2
&(13) = Eg_ +5,Soi,+ i& + 1 _(_’_s . (63)
S? S? 4 g2 48.2 g2

Comparing Equation 56 to Equation 63, we see that by
increasing the transform size from 2 to 2! increases the
noise to signal ratio. The ¢trigonometric table noise is
increasing faster than either the scaling or truncation noise.
The signal to noise ratio is reduced, from 65.71dB to 65.68dB.
As the transform size is increased to accommodate larger data

sets, the trigonometric table noise becomes the dominant error

term.
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VII. SUMMARY

A. CONCLUSIONS

A frequency domain based algorithm was developed and
tested to estimate the differential arrival time of a pulsed
radar signal <collected by two passive sensors. For
convenience, the actual implementation was performed through
time domain processing even though frequency domain processing
is advocated. The performance of the algorithm is
characterized by a ROC curve as a function of SNR. For 3dB SNR
and a P,, of 0.01, the probability of making a correct TDOA
estimate exceeds that of an incorrect estimate for a single
look. At 18dB SNR, the probability of making a correct TDOA
estimate is 100 percent for all P, ’s. If multiple looks (i.e.,
multiple bursts) are allowed, the probability of making a
correct TDOA decision at each SNR will increase.

An I/Q demodulator is assumed in the radar receiver. The
pdf of the signal driving the correlation detector is
determined from where it is obtained in the 1I/Q receiver. The
pdf, depending on selection, will be zero mean Gaussian versus
non-zero mean Gaussian, or chi-squared versus non-central chi-
squared, or Rayleigh versus Rician (non-central Rayleigh).
This thesis assumes an envelope detector at the output of the
I/Q demodulator. The envelope detector output has a Rayleigh
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or Rician pdf and drives the correlation detector. The
calculation of a CFAR threshold assumes a Gaussian pdf at the
output of the correlation detector. For small time lags,
summation of the output of the correlator may produce a
probability distribution that deviates from Gaussian. This
deviation would produce a biased threshold calculation. To
minimize the bias, a sufficient number of terms must be summed
at the output of the correlator to allow the Gaussian
approximation.

If the received pulses are collected in the frequency
domain, a spectral domain based correlation algorithm can be
implemented. An algorithm is given in this thesis.

For any digital signal processing algorithm that uses the
FFT, processing errors must be considered. For large transform
sizes the trigonometric ncise power dominates. The length of
the trigonometric coefficient word affects the degradation of
the SNR at the output of the FFT. The larger this word the
smaller the noise power. For a given transform size, left
justified data will have a higher output SNR than right
justified data.

For a correct TDOA estimate, the correlation algorithm
requires the reception of the leading pulses in the radar
pulse burst. If the pulses are received in an adequate SNR,
the correlation algorithm will produce a well defined peak
allowing the TDOA estimate. Should the environment degrade the
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received signal (i.e., destructive interference due to
multipathing, weather or terrain), the correlation algorithm
should be discarded in favor of the traditional angle of
arrival (AOA) algorithm (i.e., maximize received energy).

If the radar uses a staggered PRF, the reception of the
first pulse or several pulses has 1little impact on the
position of the correlation peak. Under this condition, the

TDOA algorithm is superior to the AOA algorithm.

B. RECOMMENDATIONS

A ROC curve should be constructed for the correlation
algorithm used in this thesis for multiple TDOA 1looks. An
intensity display could be designed that would plot as a
function of time (i.e., snapshots), those lag points chosen as
TDOA estimates. Patterns displayed on the intensity plots
would allow the user to visually determine the correct TDOA
(i.e., incoherent averaging).

The performance of the spectral domain based correlation
algorithm developed in this thesis must be further quantified.
Sets of ROC curves should be obtained for different SNR’s
(i.e., SNR variations between channels).

The simulated FFT error graph should be validated by
measuring the error performance of a dedicated properly

dimensioned FFT.
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APPENDIX A. CORRELATION MEAN AND VARIANCE

Two zero mean, independent time series are the inputs to
a correlator. This appendix will derive the expected value and
variance of the crosscorrelation function output. In this
thesis, the noise is zero mean (i.e., shifted) Rayleigh noise.
The crosscorrelation function r, (1) is defined in Equation

8 and is repeated here for convenience

N-1-|1]
I (1) = 1}:; x(yd + 1) . (64)

A. EXPECTED VALUE
x, and y, are assumed to be independent, zero mean

sequences

E{xi} = E'{Yi} = 0. (65)

The expected value of r, (1) is

N-1-|1| N-1-11f
E{r (1)} = E{ ?;; XgYigb = ;; E{X.Yy}
N-1-}1| 66
= E{XI}E{YI*I} ( )

1=0
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B. VARIANCE

The random variable z has a variance defined to be

2

0 = E{(z - E{z})?)}
because E{z} = 0 for a zero mean sequence, (67)
02 = E{z?%}.

The variance of the crosscorrelation function L,y (1) is then

) 2 N-1-|1} N-1-]1]| N-1-11]
=0 1=0 i=0 (68)
N-1-|1} N-1-|1]

E{ 2 xiYiol ijj-ol}
=Q J=0

x,x, and y,,, Y, are two groups that are independent of each

other. The expectation operation can be applied to each group

individually.

N-1-|1] N-1-|1}

oi,,(l) = § ; E{xixj} E{YioIqu} . (69)

The two indices i and j define a matrix of values. Two
contributions have to be considered.

Contribution 1. When i=j the summation occurs along the
diagonal of *he matrix. Only one summation is used and
essentially the terms are being squared. These squared terms

are not independent. To simplify the computation define m

equal to i and j
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C, = Z E'{Xj}E{}’:.l}

Because x, and y, are zero mean sequences,

E{xs} = 0%, E(yi;} =02

and o, = 0 = 02

Substituting 6° into Equation 70
N-1-11| N-1-|1]

2.2
0,0 1%
m=0 m=0

"
Q

[ ]
=

G

i

o4 [(N-1-|1)) +1]

ot (N-|1))

(70)

(71)

Contribution 2. When i#j all the terms except those on the

diagonal are summed. These terms are independent. For i#j

N-1-|1] N-1-{1|

C2
=0

0, using Equation 65

Therefore, Equation 69 becomes O;_ =

69

; E{x,} E{x,} Ely,.,} Ely,.,}
=0

o'(N - |1]) .

(72)
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C. CROSSCORRELATION STATISTICS

Each data point output by the correlation function
represents a summation of terms. Using the central limit
theorem, the output of the correlation function i: assumed to

have a Gaussian distribution.

In conclusion r, (1) -~ N(0, o*(N-|1{)

where N = Normal (Gaussian) distribution
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APPENDIX B. MATLAB CODE

A. USERS GUIDE

The frequency domain based correlation software given in
this appendix is written in Pro-Matlab (version 3.5h). all
simulations were run on a Naval Postgraduate School Sun work

station using a UNIX operating system.

B. CORRELATION NATLAB CODE

SRR A A R A R R R R R R e R Y
% Program Name : FreqCorr7.m 12 May 91
%

EHTILLLLLHATTLLUAILLLALLLTLLLLLILALLTLLILLULLLLASLLL288%%8%%
Clear

clg

clc
FLFLLLVSLRBLLLTAALTALIILIVLLLLLLLLLILITVLL2LLBTLLTLIRLHLL%%

PULSE CORRELATION
Version 7.0

1. 1 Channel vs Reference Channel
or
1 Channel vs Second Channel.

2. Rician Signal and Rayleigh Noise pdf’s
(Low SNR signals have power approximately 2.)

3. 0 dc Correlation. Subtract dc from both signals.

dP JO dP I I IO I I I IO IP P

% 4. Normalize correlation output in Fourier domain.

R A A A e R e A Rt R e e R LRt
% This MatlLab program will either :

% 1. Correlate a received pulse sequence against a reference
% pulse sequence. The reference sequence parameters are
% specified by the user and are used to construct the

% sequence.

% or

%
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2. Correlate two received pulse sequences against each
other.

Correlation of the pulse sequences is accomplished by
multipling in the frequency domain one spectrum against
the conjugate of the other spectrum. An inverse FFT is
performed on the result to yield the time difference
(TDOA) between the two sequences.
FEEETLHLLHLLIHLFTLLBULVILLHTLHLLHBLILILLLHILLLLHLLLHIIH3%%%

IO IR IO I IC I I IO IR IR

clc

echo on
FEEFEEFETLETHLULBELBEENLEEESLEHLRLELLETBILLTLALHESHIBLL5%9%
SELECT CORRELATION OPTION

Select either 1 or 2 :

1. Time delay in one receiver channel measured against a
reference signal.

2. Differential time delay between two channels.

dP JP P IP JIP 0P IP I P

THEZLLHHBLRBALLLLLILLLTIAALULILLAULLLILIDABLLLLLLILI4S5%%%
echo off

option = input (' Select correlation option 1 or 2 ; N
clc

echo on

A R A e A A R R R e R R R L
% Option 1 : Time Delay In One Channel

%

% Reference Pulse Train Parameter Selection.

FAISHTUTHILVLUTIVLDVULLILHULVILIFLLILTVULLLIBLHILTLLLBITB9%S

echo off

if option==l
wi=input ( 'Pulse Width (seconds) : );
pr=input ( 'Pulse Period (T seconds) : ")
nu=input ( ‘Number of pulses in pulse train
NumberPoint sRef=pr*nu;

end

s e
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clec

echo on

SR R R R R e e e R E LR E L
%

%

% Delayed Pulse Train Parameter Selection

%

%
EELLALLLRLLIIANLLLLTAALAILLLTTLIALHHLLLLILLLLLBLBLTLHBLLR94%%
echo off

dly=input (' Channel 1 delay tau (sec.) of pulse train : "y
wi2=input (' Pulse Width (seconds) : )
pr2=input (' Pulse Period (T seconds) : ry;
nu2=input (' Number of pulses in Delayed Pulse Train : ")
NumberPointsDel=(pr2*nu2)+dly; $calc. nmbr pts sig + delay
clc

if option==2

dlyCh2=input (' Channel 2 delay tau (sec.) pulse train : )
wiCh2=input (' Pulse Width (seconds) : )
prCh2=input (' Pulse Period (T seconds) : ")

nuCh2=input (' Number of pulses in Delayed Pulse Train )
NumberPointsDel2= (prCh2*nuCh2) +dlyCh2; %nmbr pts sig + delay
end

EEELEIXLLAILLLLIALALLFBIAIBLTILLLALLLTEIITITBLLULHLLL4898%%%%
Zero pad both sequences to N3=N2+Nl-1. Must then make N3
meet the simple formula N3 = 2”m to allow speedy
computation of the FFT.
WARNING : IBM 80286 MATLAB WILL NOT ALLOW VECTORS GREATER
THAN 4000. So an input pulse train of 128 will exceed the
system. Solution is to use the SUN workstation or 386/486.
L A e R e A R R A A R R R R AR R R R R R
if option==l
ZeroPadPoints=NumberPointsRef+NumberPointsDel-1; $N3=N2+N1-1
for m=2:1:19; $2~(19) = 524288 point FFT max
if 2”m >= ZeroPadPoints,
ZeroPadPoints=2"m;
break; %when find a 2“m power, exit loop

dP dP P OP JIP P

end
end
end
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if option==2
ZeroPadPoints=NumberPointsDel2+NumberPointsDel-~1; $N3=N2+N1l-1
for m=2:1:19; %27 (19) = 524288 point FFT max
if 2”"m >= ZeroPadPoints,
ZeroPadPoints=2"m;
break; $when find a 2”m power, exit loop
end
end
end

$EIEEELE555%%3%% Create Reference Pulse Train $%%$$5$$33%%%%%
if option==
ReferencePulse=zeros (l:ZeroPadPoints); %zero pad past pr*nu
for PulseCounter=l:pr:NumberPointsRef %steps of Ref. period
for CutUpPulse=0:pr;
if CutUpPulse<=wi
ReferencePulse (PulseCounter+CutUpPulse)=1.0;
end
end
end
Refdc=mean (ReferencePulse (1:NumberPointsRef));
ReferencePulse (1:NumberPointsRef)=ReferencePulse (1:NumberPoi
ntsRef) -Refdc;
end

$%%%%%% Create Channel 1 Delayed Pulse Train $%$%%%3%3%%%%%
DelayedPulseTrain=zeros (1:ZeroPadPoints) ;%0 pad past pr2*nu2
for PulseCounter=(dly+1l) :pr2: (pr2*nu2+ (dly+1)) ; $pr2*nu2=Nmbr
for CutUpPulse=0:pr2; %...pts in Del. Pulse Train
if CutUpPulse<=wi2
DelayedPulseTrain (PulseCounter+CutUpPulse)=1.0;
end
end
end

if option==2
$%%%%%% Create Channel 2 Delayed Pulse Train S%S¥%%%43%3%%%
DelayedPulseTrain2=zeros (1l:ZeroPadPoints) ;%0 padpast pr2*nu2
for PulseCounter=(dlyCh2+1) :prCh2: (prCh2*nuCh2+ (dlyCh2+1));
for CutUpPulse=0:prCh2;
if CutUpPulse<=wiCh2
DelayedPulseTrain2 (PulseCounter+CutUpPulse)=1.0;
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end

end
end
end
clc
echo on
FEEEEFLLTHXLLITHLIBILFUTRLLVLAIBLIBLLIELIHITILATLLLLLIHLL2%%%%
% Signal to Noise Ratio Calculation
% Define Rayleigh noise power to equal 2.
% Rician pdf created for sinusoid + Gaussian noise.

EEEHEEFLLLHAILHLFLTLHAILLLBILLLBLLAATLLALLILAHLLLLLLLLIR3%9%%
echo off

SNR=input (* Desired SNR : ');

NoisePwr=2; $rayleigh noise pwr =2

FEHELTIHLEHLLLLHBLITTHLAATERLIALIBLHBLALLIBULBLIBLILLIL9%%%%

% Sum Channel 1 & 2 signals plus their initial delay.

AR R R R R R R e A R e R R R R R R e Y

SigEnergy=0; $initialize Channel 1 energy to 0

for index=1:NumberPointsDel;%sum over Ch. 1 delayed signal
SigEnergy=SigEnergy+ ( (DelayedPulseTrain(index)) ."2);

end

if option==2

SigEnergy2=0: $initialize Channel 2 energy to 0

for index=l:lumberPointsDel2;%sum over Ch. 2 delayed signal
SigEnergy2=SigEnergy2+ ( (DelayedPulseTrain2 (index)) ."2);

end

end

EEALBLBLUULLBALAILAITTILLLIULLALBATLTVIBULLTHAAIBILLLITL99%%
% Calc. Ch. 1 signal amplitude to meet required input SNR.
FABHAALBLLLAABILAALBLLAALLLLLLLLABRAVLLBRBVLRBLLLIHL293%%%%
SNR10=SNR/10;

SNRLinear=10~SNR10; $SNR in linear units
SigAmplitude=gqrt (NoisePwr*SNRLinear*NumberPointsDel/SigEner
gy):

if option==2
i e e e e e e A e e L s R R AR AR At L
$ Calc. Ch.2 signal amplitude to meet required input SNR.
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FEEEEEEEEEAABEEEEFTIEEEIEEILTIFELIEHLLESHLLIHLLLEESEELEE%S
SNR10=SNR/10;

SNRLinear=10"SNR10; %SNR in linear units
SigAmplitude2=sqrt (NoisePwr*SNRLinear*NumberPointsDel2/SigEn
ergy2);

end

S A R L e et e e e T s
% Create Rayleigh Noise matrix for Channel 1.
S R e e e R R TR e

rand (' normal’); $Gaussian mean=0, variance=l
for index=1:NumberPointsDel,

GaussNoisel (index)=rand; $N(0,1)

GaussNoiseZ2 (index) =rand; $§N(0,1)
end

RayleighNoise=sqgrt ( (GaussNoisel) .”*2+ (GaussNoise2) .*2);

FEHTHITVIHIHLTLBILLILIBILUTLILUVIVIDLIUIBUBLDIILIHIH89%9%
% Create Rayleigh Noise matrix for Channel 2.
LHEEFHTLTHIHLLTALALILLLLLLLLTLIBLLLLLLLLLBIBLILLIBIHB9%4%
if option==

rand (' normal’); $Gaussian mean=0, variance=1l
for index=1:NumberPointsDel2,

GaussNoise3 (index)=rand; $N(0,1)

GaussNoise4 (index)=rand; %N (0, 1)
end

RayleighNoise2=3sqrt ( (GaussNoise3) .2+ (GaussNoised) ."2);
end

EEELLLRLLTLLIBLUBALFLLFLLLLBALTLLTHLHLLLLLTLLTLHHIHH4884%

% Make Rician amplitude of Channel 1 delayed pulse train

% and remove the dc component of entire signal.

R R T R e R i A e A e R L e L

SE=0;

for index=1:NumberPointsDel, %1 --> delay + delayed signal
if DelayedPulseTrain (index)==1 $if one, make Rician

DelayedPulseTrain (index)=DelayedPulseTrain(index) .*rician(Si
gAmplitude) ;
SE= (DelayedPulseTrain (index)) ."2+SE;
end $end Rician modification loop
end
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SP=SE/NumberPointsDel;

$%%%%%% Add noise to Channel 1 Delayed Pulse Train %%%%%%%
for index=1:NumberPointsDel, %1 --> delay + delayed signal
if DelayedPulseTrain (index)==0 %no Rayleigh noise to signal

DelayedPulseTrain (index)=DelayedPulseTrain (index) +RayleighNo
ise (index);

end

end

%$%%%% Remove dc component of Channel 1 Pulse Train %%%%
Chldc=mean (DelayedPulseTrain (1l:NumberPointsDel)) ;
DelayedPulseTrain (1:NumberPointsDel)=DelayedPulseTrain(1l:Num
berPointsDel) -Chldc;

if option==2

e R R e e e e e R R e R e R iR R R R LT

% Make Rician amplitude of Channel 2 delayed pulse train

% and remove dc component of entire signal.

FELEEEFLFLLLHLHILIHBITUTLTLILLLLUAIILLIILITHLLLIHIIH39%%%

SE=0;

for index=1:NumberPointsDelZ, %1 --> delay + delayed signal
if DelayedPulseTrain2 (index)==1 $if one, make Rician

DelayedPulseTrain2 (index) =DelrnyedPulseTrain2 (index) . *rician (
SigAmplitude2);
SE= (DelayedPulseTrainZ2 (index)) . “2+SE;
end %end Rician modification loop
end
SP=SE/NumberPointsDel?2;

$%%%%% Add noise to Channel 2 Delayed Pulse Train %%%%%%3%%
for index=1:NumberPointsDel2, %1 --> delay + delayed signal
if DelayedPulseTrain2 (index)==0 $no Rayleigh noise to sig

DelayedPulseTrain2 (index)=DelayedPulseTrain2 (index) +Rayleigh
Noise2 (index) ;

end

end

$%%%% Remove dc component of Channel 2 Pulse Train $%%%%
Ch2dc=mean (DelayedPulseTrain2 (1:NumberPointsDel2));
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DelayedPulseTrain2 (1:NumberPointsDel2)=DelayedPulseTrain2 (1:
NumberPointsDel2) -Ch2dc;

end
subplot (221) $two rows, two columns
time=(0:1:2eroPadPoints-1); $Start time axis at 0

if option==

$3E333%%%3%8%% Plot Reference Pulse Train $3%33333333%353%%%%8%
plot (time, ReferencePulse);

title ('Reference Pulse Sequence’);

xlabel (‘time’);

grid

end

%$%%% Plot Channel 1 pulse train + Rayleigh/Rician noise%%%%
tophel=1l.1l*max (DelayedPulseTrain);

bottomDel=1.1l*min (DelayedPulseTrain);

axis ([0 NumberPointsDel bottomDel topDell])

plot (time,DelayedPulseTrain) ;

title('Channel 1 Pulse Sequence + Rician/Rayleigh Noise’);
xlabel (' time’);

grid

if option==

%$%%% Plot Channel 2 pulse train + Rayleigh/Rician noise %%%
topDel2=1.1*max (DelayedPulseTrain2); %10 percent headroom
bottomDel2=1.1*min (DelayedPulseTrain2);

axis ([0 NumberPointsDel2 bottomDel2 topDel2])

plot (time,DelayedPulseTrain2);

title(’'Channel 2 Pulse Sequence + Rician/Rayleigh Noise’);
xlabel ('time’) ;

grid

end

EEEEALVLLLBLLALALBBLLLLLLIAABALBALLLLLTAILLABALLIRLLSIH49%%
% Correlation
FLEEEAALLLTLILLLLLLLLELTALALELALLLLLLHABRAAALBLBLLLHIHH%%%Y
if option==l

fR=£fft (ReferencePulse) ;

fD=fft (DelayedPulseTrain) ;

end
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if option==

fR=fft (DelayedPulseTrain);
fD=fft (DelayedPulseTrain2) ;
end

z=fD.*conj (fR) ;

FEEFEFELLLLHHITRLTTLLLLHHLLILFLLLLLLBLBBEL%S

% Calculate normalizing coefficient

FEEEEEFLLULAHAISFILTTLLBELLHEHLLLLLLULBLSHHL%%

Norml=0;

Norm2=0;

for k=1l:1:length (£fD)
Norml=(abs (fD(k)) ."~2) +Norml;
Norm2=(abs (fR(k,) .~2) +Norm2;

end

Norml=sqrt (Norml) ;
Norm2=sqrt (Norm2) ;

NormCoeff=Norml*Norm2;
z=z./NormCoeff;

z=z*length (£fD) ;

ifftz=ifft(z);
magz=abs (ifftz);

3%%%% Flip vector for appearance $%3%%$3%3%%%%%%
Topmagz= (length (magz) /2+1) ;

Bottommagz=length (magz)/2;

magzlen=length (magz); $%$measure length of magz
Transmagz=[magz (Topmagz :magzLen) ,magz (1:Bottommagz) ];

$5%%%% Make -time to +time axis HHEELLFHIITFBLILSS
minustime=- (length (Transmagz)/2) ;
posittime=(length (Transmagz)/2)-1;
timel=(minustime:1l:posittime);

topmagz=1.1l*max (magz); %add 10 percent head room
axis ([minustime posittime 0 topmagz]) %scale axis

subplot (212)
plot (timel, Transmagz) ;
title ('FFT Correlation : Channel 1 vs. Channel 2');
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xlabel ('time lag’);
grid
gtext (' +7dB SNR')

lj4print $Spanagel Room 427 Laserjet

axis([1 2 3 4]); %reset axis scaling
axis;

R Rt R e LR e
% Program Name : CorrPfaLoop.m 19 July 91
FEELEHFLIULLTALALLLILLLAALLAELLELULHLLLALABLHLLLALLLALLHB9%%%
% Purpose : To compute the Pfa for Signal / Noise only for

% then correlation function. This program creates zero mean
% RAYLEIGH noise.
FELLBATABLLLLATBALLUBULHBLLIBALLILLLLLTALATABLLABLLHBLEHBL%%%

Clear

clg

subplot (221)
rand ('normal’)

PFA=1.0; $will be divided by ten to start
FTIELULTLHULHVILUUDIIVLHIIILHI99Y

for PFACOUNTER=1:1:4

FEFFALZYLBLLLARULHBLLIBLLLBLES

PFA=PFA/10; %Pfa = 0.1 0.01, 0.001, 0.001

FTEEFLTBLAULTVLBLBLBBHI9%%%
for SNR=0:1:18 %Outer loops through all SNR'’s.
FTEELFXLHLBLLAILLBLLBBIBLB299%%

Iterations=30; $30 data points per SNR point
AHLLELLHLIBLLHABHLUIBLHH%4S

for loop=l:1:Iterations %inner loop, creates groups of +- a
ELFEBLAYTAABLLABLLITRBIHRS

loop;

AboveThreshold(loop)=0;

BelowThreshold (loop)=0;
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Threshold (loop)=0;
MaxRxy (loop) =0;
RxyThreelag (loop)=0;

FEEEEEHL3%%% Set Parameters HFFEHHILTLHLLLLHITLH3%%%

N=100; %100 noise points, therefore 200 correlation points
a=10; $+- 10 % on either side of 0 time lag

Pfa=PFA; $Reestablish because Pfa destroyed each loop
PfaDefined=Pfa;

$HEEE353%5%%%% Make N points Noise SEHEEEEELELLH3%%%
snrnoiseloop %call signal plus noise generation at a SNR

$%%%% Correlation of zero mean noise only for Pfa calcul. %%
MeanRayl=mean (RayleighNoise); %$noise created in snrnoise.m
MeanRay2=mean (RayleighNoise2) ;
RayleighNoise=RayleighNoise-MeanRayl;
RayleighNoise2=RayleighNoise2-MeanRay2;

Rxy=xcorr (RayleighNoise,RayleighNoise2); %xcorr signal+noise
later

EHEEHIALLLLHHLY%%% Compute t~ FFHHILLELBLLEHBL2859%%%
t=0;
for i=(N-a):1: (N+a)
t=t+Rxy (i) ;
end
t=t/ (2*a+l);

FHLLLIHHL34%9%% Compute variance t S3EHHILLEHH4%%%
Vart=0;
for i=(N-a):1l: (N+a)
Vart=Vart+ (Rxy(i)-t)."*2;
end
Vart=Vart/ (2*a+l);

ALYV LLLX3%%% Define Pfa FHPSHAH59319933%3%

Pfa=pPfa*2; $multiply by 2

Pfa=l-Pfa; $subtract one
Threshold(loop) =inverf (Pfa) ;

Threshold (loop)=Threshold (loop) *sqrt (2) *sqrt (Vart); $mult by
the sgrt(2)

%¥%%%% Xcorr of signal + zero mean noise FXFHXLHLES
Rxy=xcorr (DelayedPulseTrain,DelayedPulseTrain2) ;
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$%%%%%% Compare +a to -a to Threshold %%%%%%%3%%%%%
for i=(N-a):1l: (M+a)
if Rxy (i) >=Threshold(loop)
AboveThreshold (loop) =AboveThreshold (loop) +1;
else
BelowThreshold (loop) =BelowThreshold{(loop) +1;
end

if Rxy (i) >MaxRxy (loop)
MaxRxy (loop) =Rxy (i) ;
SaveThreshold (loop) =Threshold(loop) ;
%¥Savevart (loop) =sqrt (Vart) ;
end
end

RxyThreelag (loop) =Rxy (97);
end $end # Iterations loop

£$%5%%%% Count correct threshold crossings $%%%%%%%
CorrectTDOA=0;
for count=l1l:1:Iterations
if RxyThreelag (count)==MaxRxy (count)
CorrectTDOA=CorrectTDOA+1;
end
end
PercentCorrectTDOA= (CorrectTDOA*100) /Iterations;

diary flag4

PercentCorrectTDOA

BelowThreshold

AboveThreshold

PfaDefined

SNR

SaveThreshold $compare threshold to zeroth
lag below

RxyThreelag $Channel 2 lags Channel 1 by
three pulses.

MaxRxy

diary off

end $end # test points loop

end $end Pfa loop
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S R Rt R R T R T

% Program Name : snrnoiseloop.m 19 JuLy 91
AR R R R R A R R R TR T R
dly=0; %Channel 1 delay

wi2=5; %¥Channel pulse width

pr2=10; %Channel 1 pulse period
nu2=10; %Channel 1 number of pulses
NumberPointsgDel=(pr2*nu2)+dly; %calc. nmbr pts sig + delay

dlyCh2=3; %Channel 2 delay

wiCh2=5; %$Channel 2 pulse width

prCh2=10; %Channel 2 pulse period

nuCh2=10; %Channel 2 number of pulses
NumberPointsDel2=(prCh2*nuCh2) +dlyCh2; %nmbr pts sig + delay

ZeroPadPoints=NumberPointsDel2+NumberPointsDel-1; $N3=N2+N1l-1
for m=2:1:19; %27 (19) = 524288 point FFT max
if 2"m >= ZeroPadPoints,
ZeroPadPoints=2"m;
break; %when find a 2”m power, exit loop
end
end

$%%% Create Channel 1 Delayed Pulse Train $%3%%3%%%%%%
DelayedPulseTrain=zeros (l:2ZeroPadPoints) ;%0 pad past pr2*nu2
for PulseCounter=(dly+l) :pr2: (pr2*nu2+ (dly+1)) ; $pr2*nu2=Nmbr
for CutUpPulse=0:pr2; %...pts in Del. Pulse Train
if CutUpPulse<=wi2
DelayedPulseTrain (PulseCounter+CutUpPulse)=1.0;
end
end
end

$3%3%%% Create Channel 2 Delayed Pulse Train %%%3%%3%%%%%
DelayedPulseTrain2=zeros (1:ZeroPadPoints) ;%0 padpast pr2*nu2
for PulseCounter=(dlyCh2+1) :prCh2: (prCh2*nuCh2+ (dlyCh2+1)) ;
for CutUpPulse=0:prCh2;
if CutUpPulse<=wiCh2
DelayedPulseTrain2 (PulseCounter+CutUpPulse)=1.0;
end
end
end

FHHTHABLLTUBVIVUBINBIILHALLIBIBLBLTLLALSLBLBALBEBIBLLIL89%%
% Signal to Noise Ratio Calculation
% Define Rayleigh noise power to equal 2.
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% Rician pdf created for sinusoid + Gaussian noise.
R L e R R R R R R L
echo off

NoisePwr=2; $rayleigh noise pwr =2

A R e e e e e R R R e e et

% Sum Channel 1 & 2 signals plus their initial delay.

FEEEEELHIFLLLLLIALLLLALLLHELLILTLULFSLLILHLLLHBLLALIHLLH%%%%

SigEnergy=0; $initialize Channel 1 energy to 0

for index=1:NumberPointsDel;%sum over Ch. 1 delayed signal
SigEnergy=SigEnergy+ ( (DelayedPulseTrain(index))."2);

end

SigEnergy2=0; $initialize Channel 2 energy to 0
for index=1:NumberPointsDel2;%sum over Ch. 2 delayed signal

SigEnergy2=SigEnergy2+ ( (DelayedPulseTrain2 (index)) ."2);
end

A e e e e e e R e L]
% Calc. Ch. 1 signal amplitude to meet required input SNR.
A R R e e L R e R e L L]
SNR10=SNR/10;

SNRLinear=10~SNR10; %$SNR in linear units
SigAmplitude=sqrt (NoisePwr*SNRLinear*NumberPointsDel/SigEner
gy):

AR L R e e e R e s e R R R R e R T
% Calc. Ch.2 signal amplitude to meet required input SNR.
AR A R A A R e R R e R R R L R R R R L
SNR10=SNR/10;

SNRLinear=10+SNR10; $SNR in linear units
SigAmplitude2=sqrt (NoisePwr*SNRLinear*NumberPointsDel2/SigEn
ergy2);

SEEILFVAALILLFALVHIBLIFLFIULLLSALLLIBIIILLLALSHAIHRALITLLS%S
% Create Rayleigh Noise matrix for Channel 1.
LSV LLLLLLLLEIESHLAALLLBLAIBLLLBLBLAITSABSRBRLLH5%%
for index=1:NumberPointsDel,

GaussNoisel (index)=rand; SN (0,1)

GaussNoise2 (index)=rand; $N(0,1)
end
RayleighNoise=sqrt ( (GaussNoisel) . "2+ (GaussNoise2) ."2);

FEEHLALLLLLLHLLLHLLLLLLHLBLLTUBILPLELLLLBLBLFLHIH4889599%
% Create Rayleigh Noise matrix for Channel 2.
S e i e e R e e et R e R AR L]

85




for index=1:NumberPointsDelZ2,

GaussNoise3 (index)=rand; $N(0,1)

GaussNoise4 (index) =rand; $N(0,1)
end
RayleighNoise2=sqrt ( (GaussNoise3) . "2+ (GaussNoiseq) ."2);

FETTEHHLIFHLILBLTATHLLEHLLLLTALLLLSELLLILBLLLETLITHIHTLHH%%%
$ Make Rician amplitude of Channel 1 delayed pulse train

% and remove the dc component of entire signal.

A A E E E E E E  E E E  E  E  E  E  t R R e R T T
SE=0;

for index=1:NumberPointsDel, %1 --> delay + delayed signal
if DelayedPulseTrain(index)==1 %$if one, make Rician

DelayedPulseTrain (index)=DelayedPulseTrain (index) .*rician (Si
gAmplitude) ;
SE=(DelayedPulseTrain (index)) ."2+SE;
end $end Rician modification loop
end
SP=SE/NumberPointsDel;

$%%%%%% Add noise to Channel 1 Delayed Pulse Train $%%%%%%
for index=1l:NumberPointsDel, %1 --> delay + delayed signal
if DelayedPulseTrain(index)==0 %$no Rayleigh noise to signal

DelayedPulseTrain (index)=DelayedPulseTrain (index) +RayleighNo
ise (index) ;

end

end

%¥%%%% Remove dc component of Channel 1 Pulse Train $%%%%
Chldc=mean (DelayedPulseTrain (1:NumberPointsDel));
DelayedPulseTrain (1:NumberPointsDel)=DelayedPulseTrain (1:Num
berPointsDel) -Chldc;

S R R E R e R e e e s R R R R E)
% Make Rician amplitude of Channel 2 delayed pulse train

% and remove dc component of entire signal.
EEEALLLABALLTABLAVLLBLLABLHLATLLBILIIBLLLALBBLILLIBLH233%%
SE=0;

for index=1:NumberPointsDel2, %1 --> delay + delayed signal
if DelayedPulseTrain2 (index) ==1 %$if one, make Rician

DelayedPulseTrain2 (index)=DelayedPulseTrain2 (index) . *rician (
SigAmplitude2) ;
SE= (DelayedPulseTrain2 (index)) . “2+4SE;
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end %end Rician modification loop
end
SP=SE/NumberPointsDel2;

$%%%%% Add nc 3e to Channel 2 Delayed Pulse Train %%%%%%%%
for index=1:NumberPointsDel2, %1 --> delay + delayed signal
if DelayedPulseTrain2 (index)==0 %no Rayleigh noise to sig

DelayedPulseTrain2 (index)=DelayedPulseTrain2 (index) +Rayleigh
NoiseZ2 (index) ;

end

end

$%%%% Remove dc component of Channel 2 Pulse Train %%%%
Ch2dc=mean (DelayedPulseTrain2 (1:NumberPointsDel2));
DelayedPulseTrain2 (1:NumberPointsDel2)=DelayedPulseTrain2 (1:
NumberPointsDel2) -Ch2dc;

DelayedPulseTrain=DelayedPulseTrain(1:100};
DelayedPulseTrain2=DelayedPulseTrain2 (1:100) ;

RayleighNoise=RayleighNoise (1:100);
RayleighNoise2=RayleighNoise2 (1:100);
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APPENDIX C. TDOA CONSTANT THRESHOLD SIMULATION

A. INTRODUCTION

Four graphs of the output of a time domain based
correlation detector using a constant threshold are given.
Each figure has four simulations using a SNR of 1dB. The P,

ig varied from 0.01 to 0.00001 from Figure 26 to Figure 29.
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APPENDIX D. FFT OUTPUT NOISE TO SIGNAL RATIO

A. INTRODUCTION

The noise to signal ratio for thirteen passes through a

FFT butterfly are calculated below. The calculation assumes

the word length of

the arithmetic logic unit (ALU) of the

computer is 16 bits long. The length of the input data points

are 12 bits long. The data points are right justified when

placed into the ALU. For a 16 bit ALU and a 12 bit data

input, scaling occurs at the seventh pass and every other pass

after that.

Pass 1
The noise power

first pass N,%(1) is

NZ (1)

S8
—
(=]
—
"

at the output of the butterfly after the

a function of

2N;i (0) + 20%2(0) + S202(0) + 0%(0)

= signal power input to butterfly
= truncation noise power (74)

scaling noise power
sine/cosine table noise power
noise power input to FFT

During pass one there is no scaling, no truncation, and the

trig table is not used. These error terms are zero. Equation

74 reduces to
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Nz (1) = 2Ng
75
where N§ = %2'2” (73)

noise input to butterfly

Pass 2

The noise power at the output of the butterfly after the

second pass N,?(2) is a function of

Ni(2) = 2Ni(1) + 2032(1) + 2S520%(1) + o2(1) . (76)
During pass two scaling and truncation are not performed, and

the trig table is not used. These noise terms are zero.

Substituting Equation 75 into 76

N7 (2)

2(2N2) )

22N;

Pass 3

The noise power at the output of the butterfly after the

third pass N,*(3) is a function of

N3 (3) = 2N3(2) + 20%(2) + 22520%2(2) + 0%(2) . (78)
Scaling noise is zero because it is not performed during pass

three. Substituting Equation 77 into 78
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[t}

NZ(3) = 2(23N2) + 225202 + o2
A 7 vorT (79)
SN + 225%0% + 0%

Pass 4

The noise power at the output of the butterfly after the

fourth pass N,?(4) is a function of

Ni(4) = 2NZ(3) + 20%(3) + 23s20%(3) + 0%(3) . (80)
Scaling noise is zero because it is not performed during pass

four. Substituting Equation 79 into 80

Ni(4) = 2¢NZ + 245207 + 307 . (81)

Pass 5

The noise power at the output of the butterfly after the

fifth pass N,?(5) is a function of

NZ(5) = 2Ni(4) + 20%(4) + 2%5%0%(4) + 0%(4) . (82)
Scaling noise is zero because it is not performed during pass

five. Substituting Equation 81 into 82

NE(S) = 25NZ + (2% + 2%)S%0% + 702 . (83)

Pass 6

The noise power at the output of the butterfly after the
sixth pass N,?(6) is a function of
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NZ(6) = 2Ni(5) + 20%(5) + 2%5205(5) + 0%(5) . (84)
Scaling noise is zero because it is not performed during pass

six. Substituting Equation 83 :.nto 84

Ni(6) = 28N + 27S%0% + 1507 . (85)

Pass 7

The noise power at the output of the butterfly after the

seventh pass N,’(7) is a function of

Ni(7) = 2Nj(6) + 20%(6) + 2S20%(6) + 0%(6) . (86)
Scaling is performed for the first time during pass seven.

Substituting Equation 85 into 86

Ni(7) = 2'NZ + (2% + 2)S20% + 310% + 207 . (87)

Pass 8

The noise power at the output of the butterfly after the

eighth pass N,’(8) is a function of

NZ(8) = 2NZ(7) + 20%(7) + 27S%0%(7) + 0%(7) . (88)
Scaling is not performed during this pass. Only the scaling

noise from the previous pass is added. Substituting Equation

87 into 88

N;(8) = 2°NZ + (2° + 2%)S5%0% + 630% + 40 . (89)
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Pass 9
The noise power at the output of the butterfly after the

ninth pass N,?(9) is a function of

Na(9) = 2Ni(8B) + 202(8) + 285202(8) + o%(8) . (90)

Substituting Equation 89 into 90

NF(9) = 2°N2 + (219 + 2° + 2°)S%02 + 1270% + 1002 .  (91)

Pass 10
The noise power at the output of the butterfly after the

tenth pass N,?(10) is a function of

NZ(10) = 2NZ(9) + 202(9) + 2°520%(9) + a%(9) . (92)
Scaling is not performed this pass. Only the scaling noise

from the previous pass is added. Substituting Equation 91 into

92

N} (10) = 219N2 + 21252¢% + 2550% + 2002 . (93)
Equation 93 describes the noise power at the output of a
butterfly after the tenth data pass. The noise to signal ratio
after the tenth pass through the butterfly is expressed as the

ratio
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210N; - 22520 + 2550% + 2002

(94)
21052

NZ
—2(10)
>

Dividing through by the denominator (signal power) each

independent and uncorrelated noise term can be identified

Na Ng e, 10 1 0%
—8—2(10)-——5—2*40,*——2’5—2
2
Np ) , .
where Sz {10) = output Noise to Signal ratio
NZ
Eﬁ = input Noise to Signal ratio (95)
40’ = sine/cosine table noise
2
o . . . ,
-%-g; = truncation Noise to Signal ratio
1 02 . . . ,
ey =scaling Noise to Signal ratio

The noise to signal ratio calculation for 13 passes (2%

= 8192 points) through the butterfly algorithm continues

Pass 11

The noise power at the output of the butterfly after the

11** pass N,*(11) is a function of

Ni(11) = 2N2(10) + 203(10) + 2'°5364(10) + 0%(10) . (96)

Substituting Equation 93 into 96

Ni(11) = 21N + (21 + 21%) S%0; +~ 51107 + 4207 . (97)
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Pass 12 ?
The noise power at the output of the butterfly after the

12*" pass N,2(12) is a function of
NZ(12) = 2N (11) + 20%(11) + 21S8%06%(11) + oi(11) . (98)
Scaling is not performed this pass. Only scaling noise from

the previous pass is added. Substituting Equation 97 into 98

Ni(12) = 2N} + (21 + 2'?) S%0j + 102307 + 840% . (99)

Pass 13

The noise power at the output of the butterfly after the

13** pass N,?(13) is a function of

(100)
Ni(13) = 2N3(12) + 20%2(12) + 2!12520%(12) + 02(12)

Substituting Equation 99 into 100

(101)
Ni(13) = 2'3N; + (2% « 212 + 212) 520} + 204707 + 17005 .

Equation 101 describes the noise power at the output of a
butterfly after the 13" data pass. The noise to signal ratio

after the 13*" pass is expressed as the ratio

N; _213N7 + (2% + 212 4 2W) S0y + 204707 + 1700 (102)
w3 = 2057 :

Dividing through by the denominator, each independent and

uncorrelated noise term can be identified
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+5.So'f,+l°” 1O

457 48.2 52

(QI nﬂzw

output Noise to Signa. ratio

input Noise to Signal ratio (103)

= sine/cosine table noise

=truncation Noise to Signal ratio

=scaling Noise to Signal ratio
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